are very slightly longer for larger torsion angles for the benzyl esters $[1.451 (11) \text{ Å} \text{ for } abd < 30^\circ,$ 1.459 (14) Å for abd between 70-80°]; and perhaps shorter for ethers (histograms C and D) than esters, though the differences are less than the sum of the standard deviations. The data for compounds (1) and (2) fall in the ranges expected from the trends suggested by these histograms.

We thank the Fonds der Chemischen Industrie, and the Cambridge Philosophical Society, for support.

References

- ALLEN, F. H., KENNARD, O. & TAYLOR, R. (1983). Acc. Chem. Res. 16, 146–152.
- Allen, F. H. & Kirby, A. J. (1984). J. Am. Chem. Soc. 106, 6197–6200.
- CLEGG, W. (1981). Acta Cryst. A37, 22-28.
- JONES, P. G., DÖLLE, A., KIRBY, A. J. & PARKER, J. K. (1989a). Acta Cryst. C45, 226–230.
- JONES, P. G., DÖLLE, A., KIRBY, A. J. & PARKER, J. K. (1989b). Acta Cryst. C45, 231–234.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination and refinement. Univs. of Cambridge, England, and Göttingen, Federal Republic of Germany.

Acta Cryst. (1989). C45, 237-239

Bond Length and Reactivity.* Structure of 3,5-Bis(trifluoromethyl)benzyl 4-Nitrobenzoate

By Peter G. Jones[†]

Institut für Anorganische Chemie der Universität, Tammannstrasse 4, D-3400 Göttingen, Federal Republic of Germany

AND ANTHONY J. KIRBY AND JANE K. PARKER

University Chemical Laboratory, Cambridge CB2 1EW, England

(Received 7 July 1988; accepted 16 August 1988)

Abstract. $C_{16}H_9F_6NO_4$, $M_r = 393.24$, triclinic, $P\bar{1}$, a = 8.500 (1), b = 9.683 (1), c = 10.120 (1) Å, a = 86.96 (1), $\beta = 77.19$ (1), $\gamma = 82.19$ (1)°, V = 804.4 Å³, Z = 2, $D_x = 1.62$ Mg m⁻³, λ (Cu Ka) = 1.5418 Å, $\mu = 1.3$ mm⁻¹, F(000) = 396, T = 293 K, R = 0.060 for 2623 unique observed reflections. The molecule is almost planar. In particular the C–O-acyl bond is within 5° of being coplanar with the aromatic ring. As a result this bond is significantly shorter than that of the same ester of 2,6-dimethylbenzyl alcohol.

Introduction. We have reported crystal structures for two representative benzyl compounds, the triphenylmethyl ether (1a) and the *p*-nitrobenzoate ester (1b), and shown how they fit into the trends established by published structures of derivatives of benzyl alcohol (Jones, Dölle, Kirby & Parker, 1989b). We report here the structure of 3,5-bis(trifluoromethyl)benzyl *p*-nitrobenzoate (2), an ester with two strongly electronwithdrawing groups in the ring.

Experimental. The ester was prepared by acylation of the lithium salt of the alcohol using 4-nitrobenzoyl chloride. It was recrystallized by diffusion of hexane into a solution in dichloromethane, to give yellow blocks, m.p. 371-373 K.

A crystal $0.7 \times 0.45 \times 0.35$ mm, cut from a larger block, was mounted in a glass capillary. A complete sphere of profile-fitted data (Clegg, 1981) to $2\theta_{max}$ = 135° was measured on a Stoe-Siemens four-circle diffractometer using monochromated Cu Ka radiation. No crystal decay was observed on monitoring three check reflections, and no corrections for absorption or extinction were carried out. Cell constants were refined from 2θ values of 66 reflections in the range 55-65°.

Of 5617 measured reflections, 2812 were unique $(R_{int} = 0.037)$ and 2623 with $F > 4\sigma(F)$ considered observed. Index ranges after merging: h - 9 to 9, k - 11 to 11, l 0 to 12.

© 1989 International Union of Crystallography

^{*} Previous paper in this series: Jones, Dölle, Kirby & Parker (1989b).

[†] Current address: Institut für Anorganische und Analytische Chemie der Technischen Universität, Hagenring 30, D-3300 Braunschweig, Federal Republic of Germany.

Table 1. Atomic coordinates ($\times 10^4$) and equivalent Table 2. Molecular geometry of (2): bond lengths (Å) isotropic displacement parameters ($Å^2 \times 10^3$)

and bond angles (°)

120.3 (2)

123.0 (2)

119.4 (2)

119.4 (2)

119.0 (3)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
C(1) 1346 (3) 5480 (3) 1389 (3) 76 (1) C(2)-O(1) 1-344 (3) C(2)-O(2) 1-193 (3) C(2) 229 (3) 3879 (3) 30 (2) 65 (1) C(2)-C(21) 1.486 (3) C(11)-C(12) 1.383 (3) O(1) 279 (2) 4479 (2) 1247 (2) 69 (1) C(11)-C(16) 1.378 (3) C(12)-C(13) 1.403 (3) O(2) 2516 (3) 4183 (2) -857 (2) 98 (1) C(13)-C(14) 1.379 (3) C(13)-C(17) 1.499 (3) C(11) 965 (3) 6116 (3) 2772 (2) 63 (1) C(14)-C(15) 1.378 (3) C(15)-C(16) 1.388 (3) C(12) 1960 (3) 5850 (2) 3692 (2) 63 (1) C(15)-C(18) 1.496 (4) C(17)-F(1) 1.314 (3) C(13) 1526 (3) 6521 (2) 4939 (2) 61 (1) C(17)-F(2) 1.325 (3) C(17)-F(3) 1.318 (4) C(14) 119 (3) 7444 (2) 5253 (2) 65 (1) C(18)-F(4) 1.345 (4) C(18)-F(4) 1.335 (9) C(18)-F(3) 1.318 (4) (3) 7035 (3) 3094 (2) 65 (1) C(18)-F(5) 1.303 (9) C(18)-F(4A) 1.356 (9) C(16) -443 (3) 7035 (3) 3094 (2) 65 (1) C(18)-F(5A) 1.303 (9) C(18)-F(6A) 1.324 (9) C(17) 2638 (3) 6261 (3) 5912 (3) 78 (1) C(22)-C(22) 1.379 (3) C(21)-C(26) 1.400 (3) F(1) 3274 (2) 4950 (2) 5981 (2) 99 (1) C(22)-C(23) 1.390 (4) C(22)-C(24) 1.381 (3) F(2) 1890 (3) 6608 (3) 7166 (2) 134 (1) C(24)-C(25) 1.366 (4) C(24)-N(1) 1.487 (4) F(3) 3881 (3) 6982 (2) 5560 (3) 128 (1) C(23)-C(26) 1.374 (4) N(1)-O(3) 1.204 (3) C(18) -2387 (4) 8704 (3) 4661 (3) 81 (1) N(1)-O(4) 1.194 (3) F(4) -3223 (3) 8438 (3) 5893 (3) 123 (1) F(5) -3373 (3) 8703 (3) 3847 (2) 123 (1) C(11)-C(1) 13-1 (2) C(2)-C(2)-O(1) 123-7 (2) F(5A) -2237 (3) 9964 (3) 4792 (6) 159 (2) C(21)-C(2)-O(1) 113-1 (2) C(21)-C(2)-O(2) 124-0 (2) F(4A) -2237 (3) 9964 (3) 4792 (6) 159 (2) C(21)-C(2)-O(1) 113-1 (2) C(2)-C(2)-O(2) 124-0 (2) F(5A) -3373 (3) 847 (2) 5711 (12) 112 (6) C(13)-C(14) -113-1 (2) C(2)-C(2)-O(1) 12-5 (2) F(5A) -3373 (3) 847 (2) 5711 (2) 112 (6) C(13)-C(1) 113-1 (2) C(1)-C(1) 12-5 (2) F(2)-C(1) -2(2) 129 (2) F(5A) -1339 (4) 120 (3) 586 (3) 76 (1) C(13)-C(1) 113-1 (2) C(1)-C(1) -2(1) 12-5 (2) F(5A) -1339 (4) 120 (3) 586 (3) 76 (1) C(13)-C(1) 113-1 (2) C(12)-C(1) -2(1) 12-5 (2) F(5A) -1339 (4) 120 (3) 586 (3) 76 (1) C(13)-C(14) -103 (3) C(13)-C(14)-C(13) 11-7 (3) F(2)-C(13)-C(14) 120-5 (2) C(13)-C(13) -C(14) 120-5 (2) C		x	У	z	U_{eq}^*	C(1)–O(1)	1.443 (3)	C(1)–C(11) 1	•510 (3)
$ \begin{array}{c} C(2) & 3229 (3) & 3879 (5) & 30 (2) & 65 (1) & C(2)-C(21) & 1.486 (3) & C(11)-C(12) & 1.383 (3) \\ O(1) & 2791 (2) & 4479 (2) & 1247 (2) & 69 (1) & C(11)-C(16) & 1.378 (3) & C(12)-C(13) & 1.403 (3) \\ O(2) & 2516 (3) & 4183 (2) & -857 (2) & 98 (1) & C(13)-C(14) & 1.379 (3) & C(13)-C(17) & 1.499 (3) \\ C(11) & 965 (3) & 6116 (3) & 2772 (2) & 63 (1) & C(14)-C(15) & 1.378 (3) & C(15)-C(16) & 1.388 (3) \\ C(12) & 1960 (3) & 5850 (2) & 5692 (2) & 63 (1) & C(15)-C(18) & 1.496 (4) & C(17)-F(1) & 1.314 (3) \\ C(13) & 1526 (3) & 6521 (2) & 4939 (2) & 61 (1) & C(17)-F(2) & 1.325 (3) & C(17)-F(3) & 1.318 (4) \\ C(14) & 119 (3) & 7444 (2) & 5253 (2) & 65 (1) & C(18)-F(64) & 1.345 (4) & C(18)-F(63) & 1.300 (3) \\ C(16) & -443 (3) & 7035 (3) & 3094 (2) & 65 (1) & C(18)-F(5A) & 1.303 (9) & C(18)-F(6A) & 1.324 (9) \\ C(16) & -443 (3) & 7035 (3) & 3094 (2) & 65 (1) & C(22)-C(23) & 1.390 (4) & C(23)-C(24) & 1.481 (3) \\ F(1) & 3274 (2) & 4950 (2) & 5981 (2) & 99 (1) & C(22)-C(23) & 1.390 (4) & C(23)-C(24) & 1.481 (3) \\ F(2) & 1890 (3) & 6608 (3) & 7166 (2) & 134 (1) & C(24)-C(25) & 1.366 (4) & C(24)-N(1) & 1.487 (4) \\ F(3) & 3881 (3) & 6982 (2) & 5560 (3) & 128 (1) & C(25)-C(26) & 1.374 (4) & N(1)-O(3) & 1.204 (3) \\ F(4) & -3293 (3) & 8438 (3) & 5893 (3) & 123 (1) \\ F(4) & -2297 (3) & 9964 (3) & 4792 (6) & 159 (2) & C(21)-C(2)-O(1) & 113 \cdot 12) & C(21)-C(2)-O(1) & 123 \cdot 7(2) \\ F(5A) & -2533 (34) & 9467 (25) & 5714 (19) & 112 (6) & C(16)-C(11)-C(1) & 116 \cdot 7(2) & C(11)-C(1) & 123 \cdot 7(2) \\ F(6A) & -3682 (20) & 8085 (23) & 5211 (27) 112 (6) & C(16)-C(11) -C(1) & 116 \cdot 7(2) & C(16)-C(11) -C(12) & 119 \cdot 6(2) \\ F(6A) & -3682 (20) & 8085 (23) & 5211 (27) 112 (6) & C(16)-C(11) -10 \cdot 10 + 10 + C(1) -C(12) -10 \cdot 12 \cdot 7(2) \\ F(6A) & -3682 (20) & 8085 (23) & 5211 (27) 112 (6) & C(16)-C(11) -10 \cdot 12) & F(4)-C(18)-C(12) -10 \cdot 2(2) \\ C(23) & 6630 (3) & 1266 (3) & -76(2) & 60(1) & C(17)-C(13) & 113 \cdot 4(2) \\ C(24) & -733 (3) & 979 (2) & -76(2) & 60(1) & C(17)-C(13) & 113 \cdot 4(2) \\ C(25) & 6477 (3) & 1075 (3) & -1482 (3) & 79(1) & F(2)-C(17)-C(13) &$	C(1)	1346 (3)	5480 (3)	1389 (3)	76 (1)	C(2)–O(1)	1.344 (3)	C(2)–O(2) 1	.193 (3)
$ \begin{array}{c} 0(1) & 2791(2) & 4479(2) & 1247(2) & 69(1) & C(11)-C(16) & 1.378(3) & C(12)-C(13) & 1.403(3) \\ 0(2) & 2516(3) & 4183(2) &857(2) & 98(1) & C(13)-C(14) & 1.379(3) & C(13)-C(17) & 1.499(3) \\ C(13) & 1526(3) & 6116(3) & 2772(2) & 63(1) & C(14)-C(15) & 1.378(3) & C(15)-C(16) & 1.348(3) \\ C(12) & 1960(3) & 5850(2) & 3692(2) & 63(1) & C(15)-C(18) & 1.496(4) & C(17)-F(1) & 1.314(3) \\ C(13) & 1526(3) & 6521(2) & 4939(2) & 61(1) & C(17)-F(2) & 1.325(3) & C(17)-F(1) & 1.318(4) \\ C(14) & 119(3) & 7444(2) & 5253(2) & 65(1) & C(18)-F(6) & 1.304(4) & C(18)-F(5) & 1.300(3) \\ C(15) &871(3) & 7689(2) & 4334(2) & 63(1) & C(18)-F(6) & 1.304(4) & C(18)-F(4A) & 1.335(9) \\ C(16) &443(3) & 7035(3) & 3094(2) & 65(1) & C(18)-F(6) & 1.304(4) & C(21)-C(26) & 1.400(3) \\ F(1) & 3274(2) & 4950(2) & 5981(2) & 99(1) & C(22)-C(23) & 1.390(4) & C(23)-C(24) & 1.381(3) \\ F(2) & 1890(3) & 6608(3) & 7166(2) & 134(1) & C(24)-C(25) & 1.366(4) & C(24)-N(1) & 1.487(4) \\ F(3) & 3881(3) & 6982(2) & 5560(3) & 128(1) & C(25)-C(26) & 1.374(4) & N(1)-O(3) & 1.204(3) \\ C(18) & -2387(4) & 8704(3) & 4661(3) & 81(1) & N(1)-O(4) & 1.194(3) \\ F(4) & -3293(3) & 8438(3) & 5893(3) & 123(1) \\ F(5) & -3373(3) & 8703(3) & 3847(2) & 123(1) & C(11)-C(1) & 113 \cdot 2) & C(21)-C(2)-O(1) & 12.9(2) \\ F(6) & -2072(3) & 9964(3) & 4792(6) & 159(2) & C(21)-C(2)-O(1) & 113 \cdot 12) & C(21)-C(2)-O(1) & 12.9(2) \\ F(5A) & -2353(34) & 9467(25) & 5714(19) & 112(6) & C(16)-C(1)-1(1) & 16.7(2) & C(16)-C(1)-C(1) & 123.7(2) \\ F(5A) & -2533(34) & 9467(25) & 5714(19) & 112(6) & C(16)-C(1) & 113 \cdot 5(2) & C(12)-C(2)-O(1) & 12.9(2) \\ C(21) & 4654(3) & 2785(2) & -76(2) & 60(1) & C(17)-C(13) & 113 \cdot 4(2) & C(16)-C(11)-C(1) & 123.7(2) \\ F(5A) & -2533(34) & 9467(25) & 5714(19) & 112(6) & C(16)-C(1) & 113 \cdot 5(2) & C(16)-C(1)-C(1) & 123.7(2) \\ F(5A) & -2353(3) & 1266(3) & 556(3) & 70(1) & C(18)-C(15)-C(1) & 113 \cdot 2) \\ C(21) & 4654(3) & 2785(2) & -76(2) & 60(1) & C(17)-C(1) & 113 \cdot 2) & C(16)-C(11)-C(1) & 123.7(2) \\ F(5A) & -2333(3) & 1266(3) & 556(3) & 70(1) & C(15)-C(1) & 110 \cdot 2) \\ C(22) $	C(2)	3229 (3)	3879 (3)	30 (2)	65 (1)	C(2) - C(21)	1.486 (3)	C(11)-C(12) 1	·383 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ōù	2791 (2)	4479 (2)	1247 (2)	69 (1)	C(11) - C(16)	1.378 (3)	C(12) - C(13) = 1	•403 (3)
$ \begin{array}{c} \hline C(1) & 965 & (3) & 6116 & (3) & 2772 & (2) & 63 & (1) & C(14) - C(15) & 1.378 & (3) & C(15) - C(16) & 1.388 & (3) \\ \hline C(12) & 1960 & (3) & 5850 & (2) & 3692 & (2) & 63 & (1) & C(15) - C(18) & 1.496 & (4) & C(17) - F(1) & 1.314 & (3) \\ \hline C(14) & 119 & (3) & 7444 & (2) & 5253 & (2) & 65 & (1) & C(18) - F(4) & 1.345 & (4) & C(18) - F(5) & 1.300 & (3) \\ \hline C(15) & -871 & (3) & 7689 & (2) & 4334 & (2) & 65 & (1) & C(18) - F(5) & 1.303 & (9) \\ \hline C(15) & -871 & (3) & 7689 & (2) & 4334 & (2) & 65 & (1) & C(18) - F(5) & 1.304 & (4) & C(18) - F(6A) & 1.324 & (9) \\ \hline C(17) & 2638 & (3) & 6261 & (3) & 5912 & (3) & 78 & (1) & C(22) - C(22) & 1.379 & (3) & C(21) - C(26) & 1.400 & (3) \\ \hline F(1) & 3274 & (2) & 4950 & (2) & 5981 & (2) & 99 & (1) & C(22) - C(23) & 1.390 & (4) & C(23) - C(24) & 1.381 & (3) \\ \hline F(2) & 1890 & (3) & 6608 & (3) & 7166 & (2) & 134 & (1) & C(24) - C(25) & 1.366 & (4) & C(24) - C(1) & 1.487 & (4) \\ \hline F(3) & 3881 & (3) & 6982 & (2) & 5560 & (3) & 128 & (1) & C(24) - C(26) & 1.374 & (4) & N(1) - O(3) & 1.204 & (3) \\ \hline F(4) & -3293 & (3) & 8703 & (3) & 3847 & (2) & 123 & (1) & C(11) - C(1) & 109 \cdot 7 & (2) & O(2) - C(2) - O(1) & 123 \cdot 9 & (2) \\ \hline F(4A) & -2297 & (30) & 9773 & (20) & 3738 & (22) & 112 & (6) & C(2) - O(1) & 113 \cdot 1 & (2) & C(2) - O(2) & 124 \cdot 0 & (2) \\ \hline F(5A) & -2533 & (34) & 9467 & (25) & 5714 & (19) & 112 & (6) & C(13) - C(12) & 119 \cdot 3 & (2) & C(14) - C(13) & -1204 & (3) \\ \hline F(5A) & -2533 & (34) & 9467 & (25) & 5714 & (19) & 112 & (6) & C(13) - C(12) & 119 \cdot 3 & (2) & C(14) - C(13) - C(14) & 120 \cdot 5 & (2) \\ \hline C(21) & 4654 & (3) & -788 & (2) & -76 & (2) & 60 & (1) & C(13) - C(12) & 119 \cdot 3 & (2) & C(14) - C(13) & -124 \cdot 0 & (2) \\ \hline F(5A) & -2533 & (34) & 9467 & (25) & 5714 & (19) & 112 & (6) & C(13) - C(13) & 110 \cdot 3 & (2) & C(16) - C(11) - C(1) & -167 \cdot 6 & (2) \\ \hline C(22) & 5371 & (3) & 2785 & (2) & -76 & (2) & 60 & (1) & C(15) - C(14) & 110 \cdot 72 & C & C(16) - C(11) - C(1) & 120 \cdot 52 & (2) \\ \hline C(24) & 7134 & (3) & 640 & (3) & -391 & (3) & 70 & (1) & C(15) - C(14) & -120 \cdot 2) & C & $	O(2)	2516 (3)	4183 (2)	-857 (2)	98 (1)	C(13) - C(14)	1.379 (3)	C(13) - C(17) = 1	.499 (3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	cán	965 (3)	6116 (3)	2772 (2)	63 (1)	C(14) - C(15)	1.378 (3)	C(15) - C(16) = 1	·388 (3)
C(13) 1526 (3) 6521 (2) 4939 (2) 61 (1) C(17)-F(2) 1.325 (3) C(17)-F(3) 1.318 (4) C(14) 119 (3) 7444 (2) 5253 (2) 65 (1) C(18)-F(4) 1.345 (4) C(18)-F(5) 1.300 (3) C(15) -871 (3) 7689 (2) 4334 (2) 63 (1) C(18)-F(6) 1.304 (4) C(18)-F(6A) 1.324 (9) C(16) -443 (3) 7035 (3) 3094 (2) 65 (1) C(18)-F(5A) 1.303 (9) C(18)-F(6A) 1.324 (9) C(17) 2638 (3) 6261 (3) 5912 (3) 78 (1) C(21)-C(22) 1.379 (3) C(21)-C(26) 1.400 (3) F(1) 2274 (2) 4950 (2) 5981 (2) 99 (1) C(22)-C(23) 1.390 (4) C(23)-C(24) 1.381 (3) F(2) 1890 (3) 6608 (3) 7166 (2) 134 (1) C(24)-C(25) 1.366 (4) C(24)-N(1) 1.487 (4) F(3) 3881 (3) 6982 (2) 5560 (3) 128 (1) C(25)-C(26) 1.374 (4) N(1)-O(3) 1.204 (3) F(4) -3293 (3) 8438 (3) 5893 (3) 123 (1) F(5) -3373 (3) 8703 (3) 3847 (2) 123 (1) F(6) -2072 (3) 9964 (3) 4792 (6) 159 (2) C(21)-C(2)-O(1) 113 · 12) C(21)-C(2)-O(1) 122 · 9 (2) F(4A) -2297 (30) 9773 (20) 3738 (22) 112 (6) C(16)-C(11)-C(1) 113 · 12) C(21)-C(1)-O(1) 123 · 7 (2) F(5A) -2533 (34) 9467 (25) 5714 (19) 112 (6) C(16)-C(11)-C(1) 113 · 5 (2) C(12)-C(11)-C(1) 213 · 7 (2) F(5A) -2533 (34) 9467 (25) 5714 (19) 112 (6) C(16)-C(12) -119 · 6 (2) C(14)-C(13)-C(14) 120 · 2 (2) C(21) 4654 (3) 2785 (2) -76 (2) 60 (1) C(17)-C(13) 113 · 12) C (16)-C(11)-C(12) 119 · 6 (2) C(21) 4654 (3) -2385 (3) 999 (2) 70 (1) C(15)-C(14) -119 · 2 (2) C(16)-C(11)-C(12) 120 · 5 (2) C(21) 4654 (3) -2385 (3) 799 (2) 70 (1) C(15)-C(14) 119 · 3 (2) C (16)-C(15)-C(14) 120 · 2 (2) C(22) 5371 (3) 2366 (3) 99 (2) 70 (1) C(15)-C(14) 119 · 3 (2) C (16)-C(15)-C(14) 120 · 2 (2) C(24) 7134 (3) 640 (3) -391 (3) 70 (1) C (15)-C(16)-C(11) 120 · 5 (2) F(1)-C(13)-C(14) 120 · 2 (2) C(24) 7134 (3) 640 (3) -391 (3) 70 (1) C (15)-C(16)-C(13) 112 · 3 (2) F(2)-C(17)-F(1) 105 · 8 (2) N(1) 8419 (3) -581 (3) -520 (3) 90 (1) F(3)-C(17)-F(2) 107 · 1 (2) F(3)-C(17)-F(1) 105 · 8 (2) N(1) 8419 (3) -581 (3) -520 (3) 90 (1) F(3)-C(17)-F(2) 107 · 1 (2) F(4)-C(18)-C(15) 111 · 3 (3) O(4) 8869 (3) -1044 (3) 470 (3) 111 (1) F(6)-C(18)-C(15) 112 · 0 (2) F(6)-C(18)-F(4) 104 · 3 (3) O(4) 8869 (3) -1044	$\tilde{c}(12)$	1960 (3)	5850 (2)	3692 (2)	63 (1)	C(15) - C(18)	1.496 (4)	C(17) - F(1) 1	-314 (3)
C(14) 119 (3) 7444 (2) 5253 (2) 65 (1) C(18)-F(4) 1-345 (4) C(18)-F(5) 1-300 (3) C(15) -871 (3) 7689 (2) 4334 (2) 63 (1) C(18)-F(6) 1-304 (4) C(18)-F(4A) 1-356 (9) C(16) -443 (3) 7035 (3) 3094 (2) 65 (1) C(18)-F(5A) 1-303 (9) C(18)-F(6A) 1-324 (9) C(17) 2638 (3) 6261 (3) 5912 (3) 78 (1) C(21)-C(22) 1-379 (3) C(21)-C(26) 1-400 (3) F(1) 3274 (2) 4950 (2) 5981 (2) 99 (1) C(22)-C(23) 1-390 (4) C(23)-C(24) 1-381 (3) F(2) 1890 (3) 6608 (3) 7166 (2) 134 (1) C(24)-C(25) 1-366 (4) C(24)-N(1) 1-487 (4) F(3) 3881 (3) 6982 (2) 5560 (3) 128 (1) C(25)-C(26) 1-374 (4) N(1)-O(3) 1-204 (3) F(4) -3293 (3) 8438 (3) 5893 (3) 123 (1) F(5) -3373 (3) 8703 (3) 3847 (2) 123 (1) C(11)-C(1)-O(1) 109 · 7 (2) O(2)-C(2)-O(1) 122 · 9 (2) F(6) -2072 (3) 9964 (3) 4792 (6) 159 (2) C(21)-C(2)-O(1) 113 · 1 (2) C(21)-C(2)-O(2) 124 · 0 (2) F(4A) -2237 (30) 9773 (20) 3738 (22) 112 (6) C(21)-C(1)-C(1) 113 · 5 (2) C(12)-C(11)-C(1) 123 · 7 (2) F(6A) -3682 (20) 8085 (23) 5211 (27) 112 (6) C(16)-C(11)-C(1) 116 · 7 (2) C(16)-C(11)-C(12) 119 · 6 (2) F(6A) -3682 (20) 8085 (23) 5211 (27) 112 (6) C(16)-C(12) 119 · 6 (2) C(14)-C(13)-C(12) 120 · 5 (2) C(21) 4654 (3) 2785 (2) -76 (2) 60 (1) C(17)-C(13) 119 · 3 (2) C(16)-C(11)-C(1) 120 · 5 (2) C(24) 7134 (3) 640 (3) -391 (3) 70 (1) C(15)-C(14)-C(13) 119 · 3 (2) C(16)-C(14)-C(13) 120 · 5 (2) C(24) 7134 (3) 640 (3) -391 (3) 70 (1) C(15)-C(14) -119 · 5 (2) C(17)-C(13) -C(14) 120 · 5 (2) C(24) 7134 (3) 640 (3) -391 (3) 70 (1) C(15)-C(14) -C(13) 112 · 3 (2) F(1)-C(13)-C(14) 120 · 5 (2) C(24) 7134 (3) 640 (3) -391 (3) 70 (1) C(15)-C(16)-C(11) 119 · 5 (2) F(1)-C(15)-C(16) 120 · 0 (2) C(24) 7134 (3) 640 (3) -391 (3) 70 (1) C(15)-C(16)-C(13) 112 · 3 (2) F(2)-C(17)-F(1) 106 · 3 (2) C(25) 5232 (3) 2159 (3) -1337 (2) 73 (1) F(3)-C(17)-F(2) 107 · 1 (2) F(4)-C(18)-C(15) 111 · 3 (3) O(4) 8869 (3) -1044 (3) 470 (3) 111 (1) F(6)-C(18)-C(15) 112 · 0 (2) F(6)-C(18)-F(4) 104 · 3 (3) O(4) 8869 (3) -1044 (3) 470 (3) 111 (1) F(6)-C(18)-C(15) 112 · 0 (2) F(6)-C(18)-F(4) 104 · 3 (3) O(4) 8869 (3) -1044 (3) 470 (3)	C(13)	1526 (3)	6521 (2)	4939 (2)	61 (1)	C(17) - F(2)	1.325 (3)	C(17) - F(3) = 1	·318 (4)
$ \begin{array}{c} C(15) & -871 (3) & 7689 (2) & 4334 (2) & 63 (1) & C(18)-F(6) & 1-304 (4) & C(18)-F(6A) & 1-356 (9) \\ C(16) & -443 (3) & 7035 (3) & 3094 (2) & 65 (1) & C(18)-F(5A) & 1-303 (9) & C(18)-F(6A) & 1-324 (9) \\ C(17) & 2638 (3) & 6261 (3) & 5912 (3) & 78 (1) & C(21)-C(22) & 1-379 (3) & C(21)-C(26) & 1-400 (3) \\ F(1) & 3274 (2) & 4950 (2) & 5981 (2) & 99 (1) & C(22)-C(23) & 1-390 (4) & C(23)-C(24) & 1-381 (3) \\ F(2) & 1890 (3) & 6608 (3) & 7166 (2) & 134 (1) & C(24)-C(25) & 1-366 (4) & C(24)-N(1) & 1-487 (4) \\ F(3) & 3881 (3) & 6982 (2) & 5560 (3) & 128 (1) & C(25)-C(26) & 1-374 (4) & N(1)-O(3) & 1-204 (3) \\ F(4) & -3293 (3) & 8438 (3) & 5893 (3) & 123 (1) \\ F(5) & -3373 (3) & 8703 (3) & 3847 (2) & 123 (1) & C(11)-C(1) & 109 \cdot 7 (2) & O(2)-C(2)-O(2) & 124 \cdot 0 (2) \\ F(6A) & -2072 (3) & 9964 (3) & 4792 (6) & 159 (2) & C(21)-C(2)-O(1) & 113 \cdot 12 & C(21)-C(2)-O(2) & 124 \cdot 0 (2) \\ F(5A) & -2253 (3) 4) & 9457 (25) & 5714 (19) & 112 (6) & C(16)-C(11)-C(1) & 113 \cdot 5 (2) & C(14)-C(13) & -C(12) & 119 \cdot 6 (2) \\ F(6A) & -3682 (20) & 8085 (23) & 5211 (27) & 112 (6) & C(16)-C(11) - C(1) & 113 \cdot 6 (2) & C(14)-C(13) - C(12) & 119 \cdot 6 (2) \\ C(21) & -654 (3) & 2785 (2) & -76 (2) & 60 (1) & C(17)-C(13) & 113 \cdot 6 (2) & C(14)-C(13) - C(14) & 120 \cdot 5 (2) \\ C(23) & 6630 (3) & 1260 (3) & 856 (3) & 76 (1) & C(15)-C(14) & 119 \cdot 6 (2) & C(16)-C(15)-C(14) & 120 \cdot 5 (2) \\ C(23) & 6630 (3) & 1260 (3) & 856 (3) & 76 (1) & C(15)-C(14) & 119 \cdot 6 (2) & C(16)-C(15)-C(14) & 120 \cdot 5 (2) \\ C(24) & 7134 (3) & 640 (3) & -391 (3) & 70 (1) & C(15)-C(14) & 119 \cdot 6 (2) & C(16)-C(15)-C(14) & 120 \cdot 5 (2) \\ C(25) & 6477 (3) & 1075 (3) & -1482 (3) & 79 (1) & F(2)-C(17)-C(13) & 111 \cdot 4 (2) & F(3)-C(17)-F(1) & 106 \cdot 3 (2) \\ C(26) & 5232 (3) & 2159 (3) & -1337 (2) & 73 (1) & F(3)-C(17)-C(13) & 111 \cdot 4 (2) & F(3)-C(17)-F(1) & 106 \cdot 3 (2) \\ C(26) & 5232 (3) & -1538 (3) & -520 (3) & 90 (1) & F(3)-C(17)-C(13) & 111 \cdot 4 (2) & F(4)-C(18)-C(15) & 111 \cdot 4 (2) \\ C(26) & 5232 (3) & -1044 (3) & 470 (3) & 111 (1) & F(6)-C(18)-C(15) & 115 \cdot 2 (2) & F(6)-C(18)-F(4) & 104 \cdot 3 $	C(14)	119 (3)	7444 (2)	5253 (2)	65 (1)	C(18) - F(4)	1.345 (4)	C(18) - F(5) = 1	·300 (3)
$ \begin{array}{c} C(16) & -443 & (3) & 7035 & (3) & 3094 & (2) & 65 & (1) & C(18) - F(5A) & 1 - 303 & (9) & C(18) - F(6A) & 1 - 324 & (9) \\ C(17) & 2638 & (3) & 6261 & (3) & 5912 & (3) & 78 & (1) & C(21) - C(22) & 1 - 379 & (3) & C(21) - C(26) & 1 - 400 & (3) \\ F(1) & 3274 & (2) & 4950 & (2) & 5981 & (2) & 99 & (1) & C(22) - C(23) & 1 - 390 & (4) & C(23) - C(24) & 1 - 381 & (3) \\ F(2) & 1890 & (3) & 6608 & (3) & 7166 & (2) & 134 & (1) & C(24) - C(25) & 1 - 366 & (4) & C(24) - C(11) & 1 - 487 & (4) \\ F(3) & 3881 & (3) & 6982 & (2) & 5560 & (3) & 128 & (1) & C(25) - C(26) & 1 - 374 & (4) & N(1) - O(3) & 1 - 204 & (3) \\ C(18) & -2387 & (4) & 8704 & (3) & 4661 & (3) & 81 & (1) & N(1) - O(4) & 1 - 194 & (3) \\ F(4) & -3293 & (3) & 8438 & (3) & 5893 & (3) & 123 & (1) \\ F(5) & -3373 & (3) & 8703 & (3) & 3847 & (2) & 123 & (1) & C(11) - C(1) & 109 - 7 & (2) & O(2) - C(2) - O(1) & 122 - 9 & (2) \\ F(6) & -2072 & (3) & 9964 & (3) & 4792 & (6) & 159 & (2) & C(21) - C(2) - O(1) & 113 - 1 & (2) & C(21) - C(2) - O(2) & 124 - 0 & (2) \\ F(6A) & -2533 & (3A) & 9467 & (25) & 5714 & (19) & 112 & (6) & C(16) - C(11) - C(1) & 113 - 1 & (2) & C(12) - C(1) - C(1) & 123 - 7 & (2) \\ F(6A) & -3682 & (20) & 8085 & (23) & 5211 & (27) & 112 & (6) & C(16) - C(11) - C(1) & 116 - 7 & (2) & C(16) - C(11) - C(12) & 119 - 6 & (2) \\ F(6A) & -3682 & (20) & 8085 & (23) & 5211 & (27) & 112 & (6) & C(16) - C(12) & 119 - 3 & (2) & C(16) - C(11) - C(12) & 119 - 6 & (2) \\ C(21) & 4654 & (3) & 2785 & (2) & -76 & (2) & 60 & (1) & C(17) - C(13) & 113 - 3 & (2) & C(16) - C(16) - C(14) + 120 - 5 & (2) \\ C(23) & 6630 & (3) & 1260 & (3) & 856 & (3) & 76 & (1) & C(15) - C(14) - C(13) & 119 - 3 & (2) & C(16) - C(16) - C(16) - C(16) + 120 - 5 & (2) \\ C(24) & 7134 & (3) & 640 & (3) & -391 & (3) & 70 & (1) & C(15) - C(14) & 119 - 5 & (2) & F(1) - C(17) - C(13) & 113 + 4 & (2) \\ F(2) - C(21) & -C(21) & 113 + 13 & 111 & 106 & 3 & (2) \\ C(24) & 7134 & (3) & -581 & (3) & -520 & (3) & 90 & (1) & F(3) - C(17) - C(13) & 111 - 4 & (2) & F(3) - C(17) - F(1) & 106 - 3 & (2) \\ C(24) & 71$	cùs	-871(3)	7689 (2)	4334 (2)	63 (1)	C(18) - F(6)	1.304 (4)	C(18) - F(4A) = 1	.356 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)	-443(3)	7035 (3)	3094 (2)	65 (1)	C(18) - F(5A)	1.303 (9)	C(18) - F(6A) = 1	.324 (9)
$ \begin{array}{c} F(1) & 3274 (2) & 4950 (2) & 5912 (2) & 99 (1) & C(22)-C(23) & 1.390 (4) & C(23)-C(24) & 1.381 (3) \\ F(2) & 1890 (3) & 6608 (3) & 7166 (2) & 134 (1) & C(24)-C(25) & 1.366 (4) & C(24)-N(1) & 1.487 (4) \\ F(3) & 3881 (3) & 6982 (2) & 5560 (3) & 128 (1) & C(25)-C(26) & 1.374 (4) & N(1)-O(3) & 1.204 (3) \\ F(4) & -3293 (3) & 8438 (3) & 5893 (3) & 123 (1) \\ F(5) & -3373 (3) & 8703 (3) & 3847 (2) & 123 (1) & C(11)-C(1)-O(1) & 109 \cdot 7 (2) & O(2)-C(2)-O(1) & 122 \cdot 9 (2) \\ F(6) & -2072 (3) & 9964 (3) & 4792 (6) & 159 (2) & C(21)-C(2)-O(1) & 113 \cdot 1 (2) & C(21)-C(2)-O(2) & 124 \cdot 0 (2) \\ F(6) & -2072 (3) & 9964 (3) & 4792 (6) & 159 (2) & C(21)-C(2)-O(1) & 113 \cdot 1 (2) & C(21)-C(2)-O(2) & 124 \cdot 0 (2) \\ F(6) & -2072 (3) & 9973 (20) & 3738 (22) & 112 (6) & C(16)-C(11)-C(1) & 113 \cdot 1 (2) & C(12)-C(1)-C(1) & 123 \cdot 7 (2) \\ F(5A) & -2533 (34) & 9467 (25) & 5714 (19) & 112 (6) & C(13)-C(12) - C(1) & 113 \cdot 1 (2) & C(16)-C(11)-C(1) & 123 \cdot 7 (2) \\ F(5A) & -3682 (20) & 8085 (23) & 5211 (27) & 112 (6) & C(13)-C(12) - C(11) & 116 \cdot 7 (2) & C(16)-C(11)-C(12) & 119 \cdot 6 (2) \\ F(6A) & -3682 (20) & 8085 (23) & 5211 (27) & 112 (6) & C(13)-C(12) - C(12) & 119 \cdot 2 (2) & C(16)-C(11)-C(12) & 120 \cdot 5 (2) \\ C(21) & 4654 (3) & 2785 (2) & -76 (2) & 60 (1) & C(17)-C(13) & 119 \cdot 3 (2) & C(16)-C(14) - C(13) & 110 \cdot 3 (2) \\ C(22) & 5371 (3) & 2356 (3) & 999 (2) & 70 (1) & C(15)-C(14) & 119 \cdot 5 (2) & C(18)-C(15) -C(14) & 120 \cdot 5 (2) \\ C(24) & 7134 (3) & 640 (3) & -391 (3) & 70 (1) & C(15)-C(16)-C(11) & 120 \cdot 5 (2) & F(1)-C(17)-F(1) & 106 \cdot 3 (2) \\ C(24) & 7134 (3) & 640 (3) & -391 (3) & 70 (1) & C(15)-C(16)-C(11) & 120 \cdot 5 (2) & F(1)-C(17)-F(1) & 106 \cdot 3 (2) \\ C(25) & 6477 (3) & 1075 (3) & -1482 (3) & 79 (1) & F(3)-C(17)-F(2) & 107 \cdot 1 (2) & F(4)-C(18)-C(15) & 111 \cdot 4 (2) \\ C(26) & 5232 (3) & 2159 (3) & -1337 (2) & 73 (1) & F(3)-C(17)-F(2) & 107 \cdot 1 (2) & F(4)-C(18)-C(15) & 111 \cdot 4 (2) \\ C(26) & -263 (3) & -1044 (3) & 470 (3) & 111 (1) & F(6)-C(15) & 115 \cdot 8 (12) & F(6)-C(18)-F(4) & 100 \cdot 9 (3) \\ O(4) & 8869 (3) & -1044 (3) & 470 (3) & 111 (1) & F($	C(17)	2638 (3)	6261 (3)	5912 (3)	78 (1)	C(21) - C(22)	1.379 (3)	C(21) - C(26) = 1	400 (3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbf{F}(\mathbf{I})$	3274 (2)	4950 (2)	5981 (2)	99(1)	C(22) - C(23)	1.390 (4)	C(23) - C(24) = 1	.381 (3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F(2)	1890 (3)	6608 (3)	7166 (2)	134 (1)	C(24) - C(25)	1.366 (4)	C(24) = N(1) 1	.487 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(3)	3881 (3)	6982 (2)	5560 (3)	128 (1)	C(25) - C(26)	1.374 (4)	N(1) - O(3) 1	.204 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18)	-2387(4)	8704 (3)	4661 (3)	81 (1)	N(1) - O(4)	1.194 (3)		201 (3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F(4)	-3293 (3)	8438 (3)	5893 (3)	123 (1)				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F(5)	-3373(3)	8703 (3)	3847 (2)	123 (1)	C(11) - C(1) - O(1)	109.7 (2)	O(2)-C(2)-O(1)	122.9 (2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F(6)	-2072(3)	9964 (3)	4792 (6)	159 (2)	C(21) - C(2) - O(1)	113.1 (2)	C(21) - C(2) - O(2)	124.0 (2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F(4A)	-2297(30)	9773 (20)	3738 (22)	112 (6)	C(2) - O(1) - C(1)	113.5 (2)	$\dot{\mathbf{C}}(12) - \dot{\mathbf{C}}(11) - \dot{\mathbf{C}}(11)$	123.7 (2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F(5A)	-2533(34)	9467 (25)	5714 (19)	112 (6)	C(16) - C(11) - C(1)	116.7 (2)	C(16) - C(11) - C(12)	119.6 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(6A)	-3682 (20)	8085 (23)	5211 (27)	112 (6)	C(13) - C(12) - C(1)	1) 119.6 (2)	C(14) - C(13) - C(12)	120.5 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)	4654 (3)	2785 (2)	-76(2)	60 (1)	C(17)-C(13)-C(1	(2) 119.2(2)	C(17)-C(13)-C(14)	120.2 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Č(22)	5371 (3)	2356 (3)	999 (2)	70 (1)	C(15)-C(14)-C(1)	3) 119.3 (2)	C(16) - C(15) - C(14)	120.5 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(23)	6630 (3)	1260 (3)	856 (3)	76 (1)	C(18)-C(15)-C(14	4) 119.5 (2)	C(18)-C(15)-C(16)	120.0 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(24)	7134 (3)	640 (3)	-391(3)	70 (1)	C(15)-C(16)-C(1	i) 120-5 (2)	F(1) - C(17) - C(13)	113.4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(25)	6477 (3)	1075 (3)	-1482(3)	79 (1)	F(2)-C(17)-C(13)	112.3 (2)	F(2) - C(17) - F(1)	106.3 (2)
N(1) 8419 (3) -581 (3) -520 (3) 90 (1) F(3)-C(17)-F(2) 107·1 (2) F(4)-C(18)-C(15) 111·7 (3) O(3) 8943 (4) -1046 (4) -1634 (3) 161 (2) F(5)-C(18)-C(15) 115·2 (2) F(5)-C(18)-F(4) 104·3 (3) O(4) 8869 (3) -1044 (3) 470 (3) 111 (1) F(6)-C(18)-C(15) 112·0 (2) F(6)-C(18)-F(4) 101·9 (3) F(6)-C(18)-F(5) 110·7 (3) F(4A)-C(18)-C(15) 109·6 (11) F(6)-C(18)-F(5) 110·7 (3) F(4A)-C(18)-C(15) 109·6 (11) F(5A)-C(18)-F(5) 115·8 (12) F(6A)-C(18)-C(15) 112·3 (11) C(22)-C(21)-C(2) 123·2 (2) C(26)-C(21)-C(2) 116·4 (2) C(22)-C(21)-C(2) 123·2 (2) C(26)-C(21)-C(2) 116·4 (2) C(22)-C(21)-C(2) 123·2 (2) C(26)-C(21)-C(2) 116·4 (2) C(22)-C(21)-C(2) 123·2 (2) C(20)-C(21)-C(2) 116·4 (2) C(22)-C(21)-C(2) 120·2 (2) C(20)-C(21)-C(2) 116·4 (2) C(22)-C(21)-C(2) 120·2 (2) C(20)-C(21)-C(2) 116·4 (2) C(22)-C(21)-C(2) 116	C(26)	5232 (3)	2159 (3)	-1337(2)	73 (1)	F(3) - C(17) - C(13)	111-4 (2)	F(3) - C(17) - F(1)	105.8 (2)
O(3) 8943 (4) -1046 (4) -1634 (3) 161 (2) $F(5)-C(18)-C(15)$ $115 \cdot 2$ (2) $F(5)-C(18)-F(4)$ $104 \cdot 3$ (3) O(4) 8869 (3) -1044 (3) 470 (3) 111 (1) $F(6)-C(18)-C(15)$ $112 \cdot 0$ (2) $F(6)-C(18)-F(4)$ $101 \cdot 9$ (3) $F(6)-C(18)-F(5)$ $110 \cdot 7$ (3) $F(4A)-C(18)-C(15)$ $109 \cdot 6$ (11) $F(6)-C(18)-F(5)$ $110 \cdot 7$ (3) $F(4A)-C(18)-C(15)$ $112 \cdot 3$ (11) orthogonalized U_{ij} tensor. C(22)-C(21)-C(2) $123 \cdot 2$ (2) $C(26)-C(21)-C(2)$ $116 \cdot 4$ (2) $C(22)-C(21)-C(2)$ $123 \cdot 2$ (2) $C(22)-C(21)-C(2)$ $116 \cdot 4$ (2) $C(22)-C(21)-C(2)$ $C(22)-C(2)-C(2)-C(2)$ $C(22)-C(2)-C(2)-C(2)$ $C(22)-C(2)-C(2)-C(2)-C(2)$ $C(22)-C(2)-C(2)-C(2)-C(2)-C(2)$ $C(22)-C(2)-C(2)-C(2)-C(2)-C(2)$ $C(22)-C(2)-C(2)-C(2)-C(2)-C(2)-C(2)$ $C(22)-C(2)-C(2)-C(2)-C(2)-C(2)-C(2)-C(2)$	N(1)	8419 (3)	-581 (3)	-520 (3)	90 (1)	F(3) - C(17) - F(2)	107.1 (2)	F(4) - C(18) - C(15)	111.7 (3)
O(4) 8869 (3) -1044 (3) 470 (3) 111 (1) F(6)-C(18)-C(15) 112.0 (2) F(6)-C(18)-F(4) 101.9 (3) F(6)-C(18)-F(5) 110.7 (3) F(4A)-C(18)-C(15) 109.6 (11) F(6)-C(18)-F(5) 110.7 (3) F(4A)-C(18)-C(15) 109.6 (11) F(5A)-C(18)-C(15) 115.8 (12) F(6A)-C(18)-C(15) 112.3 (11) C(22)-C(21)-C(2) 123.2 (2) C(26)-C(21)-C(2) 116.4 (2) C(22)-C(21)-C(2) 123.2 (2) C(20)-C(21)-C(2) 116.4 (2) C(22)-C(21)-C(2) 123.2 (2) C(20)-C(21)-C(2) 116.4 (2) C(22)-C(21)-C(2) 123.2 (2) C(20)-C(21)-C(2) 116.4 (2) C(22)-C(21)-C(2) 123.2 (2) C(22)-C(21)-C(2) 116.4 (2) C(22)-C(21)-C(2) 123.2 (2) C(20)-C(21)-C(2) 116.4 (2) C(21)-C(20)-C(21)-C(2) 116.4 (2) C(21)-C(21)-C(2) 123.2 (2) C(20)-C(21)-C(2) 116.4 (2) C(21)-C(2) 123.2 (2) C(20)-C(21)-C(2) 116.4 (2) C(21)-C(2) 123.2 (2) C(21)-C(2) (2) C(21)-C(2) (2) C(21)-C(2) (2) C(2)-C(2) (2) C(2)-C(2) (2)	O(3)	8943 (4)	-1046 (4)	-1634 (3)	161 (2)	F(5)-C(18)-C(15)	115-2 (2)	F(5) - C(18) - F(4)	104.3 (3)
* Equivalent isotropic U defined as one third of the trace of the orthogonalized U_{ij} tensor. F(6)-C(18)-F(5) 110-7 (3) F(4A)-C(18)-C(15) 109-6 (11) F(5A)-C(18)-C(15) 115-8 (12) F(6A)-C(18)-C(15) 112-3 (11) C(22)-C(21)-C(2) 123-2 (2) C(26)-C(21)-C(2) 116-4 (2) C(22)-C(21)-C(2) 123-2 (2) C(26)-C(21)-C(2) 116-4 (2) C(22)-C(21)-C(2) 123-2 (2) C(22)-C(21)-C(2) 116-4 (2) C(22)-C(2) 116-4 (2) C(22)-C(2) 116-4 (2) C(22)-C(2) 116-4 (2) C(22)-C(2) 116-4 (2) C(22)-C(2)-C(2) 116-4 (2) C(22)-C(2)-C(2) 116-4 (2) C(22)-C(2)-C(2) 116-4 (2) C(22)-C(2)-C(2) 116-4 (2) C(22)-C(2)-C(2)-C(2)-C(2)-C(2)-C(2)-C(2)	Ō(4)	8869 (3)	-1044 (3)	470 (3)	iii di	F(6)-C(18)-C(15)	112.0 (2)	F(6) - C(18) - F(4)	101.9 (3)
* Equivalent isotropic U defined as one third of the trace of the $F(5A)-C(18)-C(15)$ 115.8 (12) $F(6A)-C(18)-C(15)$ 112.3 (11) orthogonalized U_{ij} tensor. C(22)-C(21)-C(2) 123.2 (2) $C(26)-C(21)-C(2)$ 116.4 (2) $C(22)-C(21)-C(2)$ 116.4 (2) $C(22)-C(21)-C(2)$ 120.2 $C(22)-C(2)-C(2)$ 120.2 $C(22)-C(2)-C(2)-C(2)$ 120.2 $C(22)-C(2)-C(2)-C(2)$ 120.2 $C(22)-C(2)-C(2)-C(2)-C(2)-C(2)$ 120.2 $C(22)-C(2)-C(2)-C(2)-C(2)-C(2)-C(2)-C(2)$	-(-)				(-/	F(6) - C(18) - F(5)	110.7 (3)	F(4A) - C(18) - C(15)	109.6 (11
orthogonalized U_{ij} tensor. C(22)-C(21)-C(2) 123.2 (2) $C(26)-C(21)-C(2)$ 116.4 (2) $C(26)-C(2)-C(2)$ 116.4 (2) $C(26)-C(2)-C(2)-C(2)$ 116.4 (2) $C(26)-C$	* Equivalent isotropic U defined as one third of the trace of the					F(5A)-C(18)-C(1	5) 115.8 (12)	F(6A)-C(18)-C(15)	112.3 (11
	orthogonali	red U., tensor				C(22)-C(21)-C(2)	123.2 (2)	C(26)-C(21)-C(2)	116.4 (2)
(20) - (21) - (22) -						C(26)-C(21)-C(22	2) 120.4 (2)	C(23)-C(22)-C(21)	120.3 (2)

υij

The structure was solved by routine direct methods and subjected to full-matrix least-squares refinement on F using program system SHELX76 (Sheldrick, 1976) locally modified by its author. Non-H atoms were refined anisotropically, H atoms isotropically using a riding model. The CF₃ group involving F(4-6) was disordered over two sites, with refined site occupancies of 0.9, 0.1. The minor component F(4A-6A) was refined isotropically with a common temperature factor, and subject to the restraint C-F = 1.35(1) Å. The weighting scheme was $w^{-1} = \sigma^2(F) + gF^2$. An extinction correction of the form $F_{\rm corr} = F_c / (1 + x F_c^2)$ $\sin 2\theta$)^{0.25} was applied; x refined to $1.0(1) \times 10^{-4}$. The final R value was 0.060 for 256 parameters, with wR = 0.100, S = 6.3, max. $\Delta/\sigma = 0.4$, max. $\Delta\rho$ within ± 0.33 e Å⁻³. We suspect that the high S and wR values may be associated with inappropriate estimates of $\sigma(I)$ for strong reflections; some time after this data collection the program was modified and the problem no longer occurred. Atomic scattering factors from SHELX76.*

C(25)-C(24)-C(23)

C(25)-C(26)-C(21)

N(1) - C(24) - C(25)

O(4)-N(1)-C(24)

117.7 (2)

117.5 (2)

119.1 (2)

117.1 (3)

123.9 (3)

C(24)-C(23)-C(22)

N(1)-C(24)-C(23)

C(26)-C(25)-C(24)

O(3)-N(1)-C(24)

O(4) - N(1) - O(3)

Fig. 1. Molecular structure of (2), showing the atom-numbering scheme.

Discussion. Final atom coordinates and derived parameters are presented in Tables 1 and 2 and a plot of (2) is shown in Fig. 1. The atom-numbering scheme in the benzylic system is the same as for previous compounds in this series.

The ester (2) crystallizes in an extended, almost planar conformation: none of the torsion angles is greater than $5.4 (4)^{\circ}$. This is expected for the ester group, and common for the torsion angle about C(1)-O(1), and we have pointed out (Jones, Dölle, Kirby & Parker, 1989b), that p-nitrobenzyl esters show

^{*} Lists of H-atom coordinates and $U_{\rm lso}$ values, structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51336 (13 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

a preference for a small torsion angle *abd*. The two *meta*-CF₃ groups ($\sigma_m = 0.415$, Jaffé, 1953) represent together more powerful electron withdrawal than that due to a single *p*-nitro group, so the low torsion angle *abd*, and a relatively short bond *a* [5.4 (4)° and 1.443 (3) Å, respectively] are expected.

We have thus defined conditions for controlling the conformation of the C-OX bond of benzyl alcohol derivatives without the need for synthesizing structures of fixed conformation. Introducing strongly electronwithdrawing substituents into the aromatic ring generates a preference for coplanarity with the ring, as in compound (2): whereas the C-OX bond can be directed into a near-perpendicular conformation by introducing two *ortho*-methyl groups (Jones, Dölle, Kirby & Parker, 1989a). There is already good evidence that the length of the C-O bond *a* depends on the torsion angle *abd*, as shown previously for 1-arylethanol derivatives (Edwards, Jones & Kirby, 1986). This work produces a clear-cut example of this effect: the C-OCOAr bond length a and torsion angle abd of 1.443 (3) Å and 5.4 (4)° for (2) compare with values of 1.467 (2) Å and 86.3 (2)° for molecule B of the *p*-nitrobenzoate of 2,6-dimethylbenzyl alcohol (Jones *et al.*, 1989*a*).

We thank the Fonds der Chemischen Industrie, and the Cambridge Philosophical Society, for support.

References

- CLEGG, W. (1981). Acta Cryst. A37, 22-28.
- EDWARDS, M. R., JONES, P. G. & KIRBY, A. J. (1986). J. Am. Chem. Soc. 108, 7067-7073.
- JAFFÉ, H. H. (1953). Chem. Rev. 53, 191-261.
- JONES, P. G., DÖLLE, A., KIRBY, A. J. & PARKER, J. K. (1989a). Acta Cryst. C45, 226-230.
- JONES, P. G., DÖLLE, A., KIRBY, A. J. & PARKER, J. K. (1989b). Acta Cryst. C45, 234–237.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination and refinement. Univs. of Cambridge, England, and Göttingen, Federal Republic of Germany.

Acta Cryst. (1989). C45, 239-241

Bond Length and Reactivity.* Structure of 2-(4-Nitrophenoxy)tetrahydrofuran

By Peter G. Jones[†]

Institut für Anorganische Chemie der Universität, Tammannstrasse 4, D-3400 Göttingen, Federal Republic of Germany

AND ANTHONY J. KIRBY AND HAMISH RYDER

University Chemical Laboratory, Cambridge CB2 1EW, England

(Received 18 July 1988; accepted 21 September 1988)

Abstract. $C_{10}H_{11}NO_4$, $M_r = 209 \cdot 20$, monoclinic, $P2_1/c$, $a = 9 \cdot 767$ (2), $b = 11 \cdot 942$ (2), $c = 8 \cdot 522$ (2) Å, $\beta = 92 \cdot 06$ (2)°, $V = 993 \cdot 4$ Å³, Z = 4, $D_x = 1 \cdot 40$ Mg m⁻³, F(000) = 440, $\lambda(MoKa) = 0.71069$ Å, $\mu = 0.1$ mm⁻¹, T = 293 K. The structure was refined to R = 0.052 for 1531 unique observed reflections. The tetrahydrofuran ring adopts a distorted envelope conformation commonly observed for the ribose ring of nucleosides and nucleotides. The acetal C-O bond lengths differ, with the exocyclic bond C(2)-O(2) = 1.439 (3) Å longer than the endocyclic C(2)-O(1) = 1.392 (3) Å. Both are closely similar to those observed for a comparable tetrahydropyranyl acetal.

Introduction. We have demonstrated linear relation-

ships between bond length and reactivity in several

series of acetals (Jones & Kirby, 1979, 1984, 1986;

Briggs, Glenn, Jones, Kirby & Ramaswamy, 1984). As

a general rule, the longer the C-O bond in a given series, the faster it breaks: furthermore, the more

reactive the system, the more sensitive is the length of

the bond that breaks to the leaving group capability of the group OX (Jones & Kirby, 1984). The most

reactive, and most sensitive, of the systems we have studied are the tetrahydropyranyl acetals, which favour

the axial conformation (1), both in solution and in the solid state. This is a manifestation of the anomeric

© 1989 International Union of Crystallography

^{*} Crystal Structures of Acetals. 26. Part 25: Jones, Sheldrick, Kirby & Briggs (1985).

[†]Current address: Institut für Anorganische und Analytische Chemie der Technischen Universität, Hagenring 30, D-3300 Braunschweig, Federal Republic of Germany.